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Introduction

For a recent hackathon here at Accusoft, I had the idea of going through some ancient legacy 
code for Barcode Xpress and rewriting some particularly dense and confusing code into a more 
understandable form. In the process, both speed and accuracy were greatly improved. Let’s give a 
little background on the project itself.

Barcode Xpress is an SDK that detects and reads barcodes on images, whether they be older-style 
1D barcodes (eg. UPC, Code128, etc) or newer 2D barcodes (eg. DataMatrix, QR Codes, etc). It’s 
been around for a long time; I’ve been a developer at Accusoft for almost 13 years now and it was 
still a mature product when I joined. Much of the oldest code, that which handles 1D code, was 
developed by people who long ago retired and was written in an older style of C programming, the 
C89 standard. Similar to much old legacy code, there were functions in the thousands of lines of 
code, with copy/pasted content spread throughout. The code worked great though, so for a long 
time, we hadn’t looked too deep into it because, after all, “if it ain’t broke, don’t fix it.” 

Hackathons make for a golden opportunity to experiment, free of consequence, so I lept at the 
chance to try and make the code more readable. The changes were initially just to use more 
smaller, encapsulated functions, locally scoped variables, and other things we typically associate 
with modern programming paradigms, designed to reduce developer cognitive load. In the process 
though, some observations about the functionality of the code allowed me to make some pretty big 
speed improvements.

I’ll go through the process of how I changed the code, first by going over how image data is laid out 
in memory, how the pixels are accessed, and how the existing code was modified to achieve
both readability and performance improvements.
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In memory, the buffer for this image will be a sequence 
of bytes concatenating the pixels together row-wise. 
Using hexadecimal notation, an example image row 
might look like this:

If I want to find the color information of 
a pixel with an (x, y) coordinate, I might 
perform the following calculation: 

This is pretty simple, because the pixel 
information is nicely partitioned into byte 
sized bunches of information and only 
direct indexing is needed. 

When analyzing a 1D barcode though, we 
need to measure the transitions between 
white and black columns of pixels — we 
don’t need all of this color information. 
While we do have some grayscale 
processing in other modules, for this code 
in particular, we only need black and white 
color information. Thus, we use 1bpp 
images internally. Let’s look at how these 
are organized. 

Note: In some bitmap memory formats, rows are 
always padded to be equally divisible by 4 bytes. This 
has already been incorporated into the bytes_per_row 
variable ahead, but it is something to keep in mind 
when doing work on images in memory. If you’re 
looking at an image in memory and your results show 
it severely skewed, vertically, then it’s likely you have 
a stride vs. width mismatch.

Fig 2
The memory representation of five 24-bpp color pixels

Image Data in Memory
Normal color images seen everywhere on the net are typically represented in memory as either 24 bpp 
(bits-per-pixel) or sometimes 32 bpp data buffers. This corresponds to RGB (red, green, blue) data in 
the case of 24 bpp images and RGBA (red, green, blue, alpha) for 32 bpp images. Let’s consider 24 bpp 
RGB images. Each color pixel on the image will contain an 8-bit value representing the redness of the 
pixel, 8 bits for green and 8 bits for blue. 
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Fig 1
Three pixels -- red (255, 0, 0), green (0, 255, 0), and blue (0, 0, 255)

const byte *pixel_data = (const byte*)
image.data + y*image.bytes_per_row + x*3;
const byte red = pixel_data[0];
const byte green = pixel_data[1];
const byte blue = pixel_data[2];
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Black and White Images
Because there is only 1 bit of information for each pixel, this means we can store 8 pixels of 
information in every byte of memory. This is great, and very compact, but it makes reading the 
information an exercise in bit shifts and masking. 

If we were to store the pattern of WBWBBBWW in a single byte of memory, this would be represented 
by the binary data 10100011. In hexadecimal, this is the value 0xA3. 

To access each pixel, we use something called masking, using the bitwise AND operation, to look 
at a particular bit of the byte. For example, to look at each of the bits of the value 0xA3, we could 
do the following: 

Fig 3
Eight pixels fit inside one byte of information.

Fig 4
How we might 
check each of the 
bit locations of 
our eight pixels in 
the byte. 

const byte *pixels_data = (const byte*)image.data + y*image.
bytes_per_row + x/8;

// calculate the mask, the first pixel is 0x80, the second 
0x40, etc.
const byte mask = 1 << (7 - (x % 8));

const bool is_pixel_black = (*pixels_data & mask) == 0;

As you can see, we get positive 
values when that pixel is white, 
and a zero value when the pixel 
is black. Some code to determine 
if a pixel at the coordinate (x,y) is 
black or not, we might write some 
code that looks similar to the 
following, simplified: 

001010

001010

001010

001010
001010001010

Thus, for each pixel, you need the coordinates, the image 
bitmap buffer, and then can calculate the mask. 
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At the most-reduced level, some of the 
functionality that I was simplifying can be 
boiled down to the following statement: 
Given a particular scanning direction, count 
the length of black / white runs in a direction. 

Because repeatedly calculating the mask 
and data pointer for every coordinate is 
cumbersome, if we do it every time, we 
can do some shortcuts. For example, we 
can keep a running tally of our mask as we 
progress across the image. On an ultra-
simplified level, the code looked like this: 

Phew, that’s a lot of code that deals with the pixel_data, mask, coordinates, etc. What’s 
shown above is also a drastic simplification — in reality, there were hundreds of lines 
just handling wrapping behavior, transferring mask data in and out of functions, etc. I 
needed a way to clean this up.

Existing Code

Fig 5
Example lines in a 1D barcode

2 0 8 1 8 83 8 5 9 6

void find_traces(const Bitmap &image, const int direction) {
    // Initialize the running information
    int x = 0, y = 0;
    const byte *pixel_data = (const byte*)image.data;
    byte mask = 0x80;

    // Keep scanning until everything’s done
    while (is_more_to_scan()) {
        const bool is_cur_pixel_black = (*pixel_data & mask) == 0;

        // Process this current pixel
        // ...

        switch(direction) {
        // Increment by one pixel in the horizontal direction
        case DIRECTION_HORIZONTAL:
            x++;
            mask >>= 1;
            // If we reach zero, we’ve transitioned byte boundaries
            // so reset the mask
            if (mask == 0) {
                mask = 0x80;
                pixel_data++;
            }

            // handle wrap-around if we’ve reached the row border
            // ...
            break;

        // Increment by one pixel in the vertical direction
        case DIRECTION_VERTICAL:
            y++;
            pixel_data += image.bytes_per_row;

            // handle wrap-around if we’ve reached the column edge
            // ...
            break;

        // Diagonal cases
        // ...
        }
    }
}
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class DirectionalBuffer {
    const Bitmap &image;
    byte *pixel_data;
    Point location;
    byte mask;
    
public:
    DirectionalBuffer(const Bitmap &_image, const Point &point)
        : image(_image)
    {
        this->location = point;
        this->pixel_data = (byte*)image.data + point.y * image.bytes_per_row + point.x / 8;
        this->mask = 1 << (7 - (point.x % 8));
        // alternatively: 1 << (7 - (point.x & 7))
    }

    void increment(const int direction) {
        switch(direction) {
        case DIRECTION_HORIZONTAL:
            this->location.x++;
            this->mask >>= 1;
            if (this->mask == 0) {
                this->mask = 0x80;
                this->pixel_data++;
            }
            break;

        case DIRECTION_VERTICAL:
            this->location.y++;
            this->pixel_data += this->image.bytes_per_row;
            break;

        // further cases omitted for brevity
        }
    }

    bool is_pixel_black() {
        return (*(this->pixel_data) & this->mask) == 0;
    }
};

The operations we’re doing on the image at this 
state are effectively the following: initialize buffer, 
location, and mask, query if we’re at a black pixel, 
increment in a direction, and wrap if we reach the 
border. We can pull in all of this code into a simple 
class such that we don’t have to worry about 
keeping track of each variable in tandem.

DirectionalBuffer

Here’s how a first draft of that class 
might look:

011001

001010
101000
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As you can see, this cleans up the code pretty 
nicely. Now we can finally get to performance 
improvements, now that we’ve made the code 
more modular.

This is great! Now our loop code simplifies greatly 
and we have fewer things to keep track of:

void find_traces(const Bitmap &image, const int direction) {
    DirectionalBuffer directional_buffer(image, { 0, 0 });

    // Keep scanning until everything’s done
    while (is_more_to_scan()) {
        bool is_cur_pixel_black = directional_buffer.is_pixel_black();

        // Process this current pixel
        // ...

        // move in the desired direction
        directional_buffer.increment(direction);
    }
}



6

One of the things I noticed when profiling this code was that there were huge sections of code that 
were skipped over due to the different code handling directions, and that in hot code loops, we kept 
doing the switch statements on values that never changed. Granted, the CPUs branch predictor 
would quickly determine where flow goes, but I wanted to minimize the amount of branching code  
in the function, so I decided to take a drastic step and pull the direction parameter out into  
a function template.

Templating Out the Direction

… and inside our DirectionalBuffer class:

An example of how the code might look with this, is as follows:

template <int direction>
void find_traces(const Bitmap &image) {
    DirectionalBuffer directional_buffer(image, { 0, 0 });

    // Keep scanning until everything’s done
    while (is_more_to_scan()) {
        const bool is_cur_pixel_black = db.is_pixel_black();

        // Process this current pixel
        // ...

        // move in the desired direction
        directional_buffer.increment<direction>();
    }
}

template void find_traces<DIRECTION_HORIZONTAL>(const Bitmap &image);
template void find_traces<DIRECTION_VERTICAL>(const Bitmap &image);
// ... similar for diagonal directions

template <int direction>
void DirectionalBuffer::increment() {
    switch(direction) {
    case DIRECTION_HORIZONTAL:
        this->location.x++;
        this->mask >>= 1;
        if (this->mask == 0) {
            this->mask = 0x80;
            this->pixel_data++;
        }
        break;

    case DIRECTION_VERTICAL:
        this->location.y++;
        this->pixel_data += this->image.bytes_per_row;
        break;

    // further cases omitted for brevity
    }
}
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This is a limited form of compile-time function execution, where variables are turned into 
compile-time constants. What does this give us? Well, any time we have large blocks of code 
that are dependent upon the direction value, the compiler will treat the direction as if it was a 
constant, and only the machine code for the particular direction we’re working under will be 
generated.

For example, if we look at the compiled output for the increment function, we find the 
following generated assembly code for the two functions (code will vary depending upon 
compiler, source code, etc):

As you can see, this generates smaller machine code for each function itself, which can help 
the inliner by having more room to work with. In fact, in practice, for the hot loop, the entirety 
of the DirectionalBuffer class was optimized and inlined into the parent function. The downside 
for this method is that the functions are generated multiple times in the executed, one for each 
direction. In this case, the benefits gained from inlined execution far outweighed the (relatively) 
small increase in generated code.

; void DirectionalBuffer::increment<DIRECTION_HORIZONTAL>()
    add     dword ptr [rdi + 16], 1    ; this->location.x++;
    mov     al, byte ptr [rdi + 24]    ;
    shr     al                         ;
    mov     byte ptr [rdi + 24], al    ; this->mask >>= 1;
    je      .LBB3_1                    ;
    ret                                ; if (this->mask != 0) return;
.LBB3_1:
    mov     byte ptr [rdi + 24], -128  ; this->mask = 0x80
    add     qword ptr [rdi + 8], 1     ; this->pixel_data++;
    ret

; void DirectionalBuffer::increment<DIRECTION_VERTICAL>()
    add     dword ptr [rdi + 20], 1    ; this->location.y++;
    mov     rax, qword ptr [rdi]       ;
    movsxd  rax, dword ptr [rax + 8]   ; this->pixel_data +=
    add     qword ptr [rdi + 8], rax   ;     image.bytes_per_row;
    ret
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There was still one major performance win to be gained here. Now that the code had been drastically 
simplified and refactored into smaller bits, I could see that the code that looped over the transitions 
was generating run-length information; it only really changed behavior when it found a new color.

Knowing this, I could write a DirectionalBuffer::scan_to_black() or scan_to_white() function. Naively 
written, this doesn’t really net us any performance wins yet, because internally these functions still 
use the same logic of incrementing the loop and checking. However, there is one way we can yield big 
gains — horizontal scans.

An example naive implementation might look something like this (disregarding bounds checking):

When scanning horizontally, there’s an easy 
optimization to make here, in that we can 
check if the byte value representing our 
pixel information is either 0xFF or 0x00 (for 
finding white or black blocks respectively). 

We might make 
an improvement 
of the scan_to_
black function as 
follows:

Horizontal Scanning

Fig 6 An example of a long run of white pixels.

template <int direction>
void DirectionalBuffer::scan_to_black() {
    while (false == this->is_pixel_black()) {
        this->increment<direction>();
    }
}

template <int direction>
void DirectionalBuffer::scan_to_black() {
    if (direction == DIRECTION_HORIZONTAL) {
        // A mask value of 0x80 signifies we’ve just hit the byte boundary
        while (0x80 != this->mask) {
            if (this->is_pixel_black()) return;
            this->increment<direction>();
        }

        // skip ahead 8 pixels at a time while the bits are all white
        while (*(this->pixel_data) == 0xFF) {
            this->pixel_data++;
            this->location.x += 8;
        }
    }

    // fallback to the naive behavior
    while (false == this->is_pixel_black()) {
        this->increment<direction>();
    }
}

For example, if we’re on a byte boundary and 
scanning for a black pixel, and the value of 
the pixel_data variable is 0xFF, then we know 
that every pixel in this block is a white pixel, 
and we can either continue onward skipping 8 
pixels ahead. This means that when scanning 

horizontally, we end up skipping ahead through large 
sections white or black pixels with lightning-quick speed.
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Our 1D barcode processing code had always been really quick to analyze a full image, but this 
change improved our analysis times from up to 5% to ~60%, depending upon the image. In doing 
so, I also greatly simplified the code that scans our black and white traces, so development in this 
area of code is more possible in the future.

While in general, refactoring is something best done with a delicate touch, sometimes 
it can help expose previously hidden areas of potential performance wins.

Results
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I did some profiling with skipping by 32 pixels by checking for the values 0xFFFFFFFF or 
0x00000000, but this was surprisingly slower in aggregate than the single-byte skipping. 
Always profile your code changes! Additionally, if you really wanted to get deep into the 
weeds of micro-optimizations, additional bit-twiddling code or processor instructions could 
also be used to really crank up the speed.
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