
AUTHOR

Eric Goebel
Software Development
Engineer In Test (SDET) III

5 Visual Testing
Best Practices

Don’t Do It
This may seem to counter the “best practices” claim, but in reality it does not. Visual testing is a tool
on your team’s utility belt just like any other testing method. Knowing when and where to use the
right tool is part science and part art; and when it comes to visual testing, the same rules apply. I’ve
seen many teams eager to adopt visual testing early on without investing effort into tests at a level
which precedes the system level. This phenomenon is understandable because visual testing is easy
to conceptualize. So convincing teams to take it on is less difficult than some other endeavours.

Take, for example, a scenario in which we want to test the output of a process that takes multiple
forms of input, processes it, then returns some output on a web page. The number of permutations
for something like this can end up being huge. If the way this data is presented to the user on the
system level does not differ much from case to case, then it may make more sense to offload the
majority of the tests somewhere else. With a more comprehensive set of tests in place at a lower
level, we could focus a smaller amount of testing at the system level where we can do a visual
check that the returned data is visible. The key point here is that we want to visually check that the
data is there but we don’t validate the content of the returned data. We would be running through
huge data tables of input at the contract test level or integration test level to validate the content of
the returned data.

Given that even the best implemented visual tests can require more maintenance on average than
other tests, efforts should be made to reduce the reliance on them whenever possible. Promoting
the perception that visual testing techniques are “the big guns” or “the nuclear option” helps teams
push the effort for testing closer to the bottom of the stack.

During my time in the domain of quality
assistance, I’ve seen many teams struggle
to get value from visual testing. Visual
testing, at its core, is just making sure that
the UI looks right to users. So with that in
mind, I’ll elaborate on a short list of best
practices which I have found help teams
avoid typical stumbling blocks.

1
+

+
-

-

2

Be Consistent in the
Language of Testing

It is important to decide early on about the format of testing steps and the terminology used. The
saying “a picture is worth a thousand words” rings especially true when reviewing visual tests. If the
objective of the test is even marginally unclear in either the description or the steps of execution,
then it leaves the interpretation of what is being seen in a failure up to the reviewer who may be
looking at a particular test failure for the first time. Just imagine that two people are individually
given the task of describing a screenshot of the same test failure. How likely is it that the same
exact description (word for word) will be given? Some clarity is forcibly introduced when automating
visual tests due to the fact that good assertions are fairly concrete but precision in language early on
saves time further down the road.

There are quite a few things to cover in terms of language consistency, but some key points that I
have seen help teams overcome ambiguity is defining, either officially or unofficially, the schema for
the construction of the test steps. If there is a standard model to follow in either the existing test
suite or a documented pattern to follow from a wiki - and those tests are constructed in the same
pattern in comparison to each other - then they generally read better.

Many behavior driven models will also express the importance of tense in the steps provided. Test
writers should get used to using “present perfect” tense wherever possible when defining steps
and specifically in steps which directly precede an assertion. One of the reasons this is important
is because if you are looking at a screenshot depicting the state of the application under test, it is
much more difficult to troubleshoot something that is potentially happening rather than something
that has happened. So writing in this manner helps to enforce that assumption in both writing the
automation around the steps and reviewing any potential failures.

2

2

3

Narrow Your Focus
When trying to continuously
integrate and continuously
deliver, every moment spent
manually reviewing test failures is
an expensive distraction. It may
be appealing to test the full page/
full screen under the guise of

testing multiple things at once but … it’s a trap!

Okay, it’s not always a trap, there are cases in
which you want to do that at a system level but
generally, not as part of a pipeline. To minimize
the time an engineer is required to review a
failure, we will always end up zeroing in our tests
to make assertions about the application under
test are which more and more specific. If your
test is doing some type of image comparison to
a baseline, ground truth image, the images which
are compared should not contain a navigation
sidebar if we don’t expect the functionality being
tested to alter the navigation sidebar in any way
(you should have other tests that look at the
navigation sidebar).

If, for some reason, the navigation sidebar looks
slightly different because of some external factor

like a browser update (also preventable) then
the test fails and you have effectively triggered a
manual investigation into a false positive. Not only
is there a time cost in investigating but also in
refactoring tests or re-baselining.

Image comparisons should also be avoided. The
methods used to do comparison on images vary
in effectiveness and complexity, so it makes
sense in many cases to opt for asserting aspects
of the layout instead of a direct comparison. If you
do choose to do image comparison (like a pixel to
pixel comparison between two images), consider
what types of differences you would allow and
know how difference thresholds will work for your
situation.

For example, if I wanted to allow for up to a 3.5%
difference between images strictly measuring by
pixel, then having one row of pixels different in
any direction can make a huge difference if the
size of the captured area is different.

Example: A nearly indistinguishable difference
is treated differently in automated pass/fail
scenarios.

In the table above, we could imagine that the same object is being rendered on two different devices
that are using different screen resolutions, but our capture method has no way of acting on such
granularity. In this reasonable scenario, a browser update causes both objects to have one row of pixels
render differently but the failure is only reported on 1 platform. Out of context, a manual review might
only trigger a re-baseline of the laptop scenario but leave the mobile as-is which may later incorrectly
show that our expectation is out of sync.

3

Device Image Size
1 row of pixels

changed
Difference %

Laptop 500x500 (250,000
area) 500 total 4 Fails

Mobile device 300x300 (90,000
area) 300 total 3.3 Passes

4

011001

001010
101000

011001

001010
101000

011001

001010
101000

We can’t always determine what went wrong when something fails visibly. Sure, we know when
something doesn’t look right, but how do you answer why? It is imperative that the reviewer is
provided the means to understand what went wrong without having to replay the tests locally. There
is no singular method that must be adhered to for good logging, only that it must be done in a way
that provides value.

When visual testing is first adopted, there is sometimes an underlying assumption that since it is
visual then the answer will be obvious. In many cases, that is true but for more complex applications,
an image just does not answer enough questions about the actions that took place leading up to the
failure. Timestamps help narrow the window of investigation but without some key identifier in the
logs that can be tied to the visual error the time investment to fully realize the issue could be large.

Logging

4
4

5

Basically, you should pursue novel and unique approaches to problems you face as a team
when it comes to visual testing. There is plenty of room for innovation in the visual testing
space if you choose to develop your test framework in-house. Once you get beyond the
typical pitfalls, there are going to be challenges that are specific to your environment. At
Accusoft, we’ve found that looking inward at our talent for answers, in many cases, worked
better than looking outward at the industry space. For the time being, though, our secret
sauce must remain a secret.

Make the Secret Sauce

5

5

www.accusoft.com

http://www.accusoft.com
https://www.facebook.com/accusoft/
https://twitter.com/accusoft
https://www.linkedin.com/company/accusoft/
https://www.youtube.com/user/AccusoftCorporation

