
www.accusoft.com

Accessing Cross
Platform Native
APIs from Swift

AUTHOR

Daniel Rabiega
Software Engineer II, Barcode Xpress

Apple’s Swift programming language has excellent support for working with and consuming
native Objective-C APIs. That language, however, has little to no applicability outside of Apple’s
platforms. You are likely to find that you need to rely on lower level interoperability features in
order to interface with cross platform APIs which are most commonly implemented in C or C++.

C is usually the greatest common denominator between whatever language your API is or will
be written in and Swift. If you want to consume an existing C API, or are implementing a new
one which can be used from C, you will find that the process is considerably simpler than
consuming an existing API designed for C++ or some other high level language. Calls to such
higher level languages will need to be wrapped in a layer of C using whatever interoperability
features are available there.

Even Objective-C APIs can sometimes find this step necessary. Apple’s compiler will generally
allow you to include C++ features and syntax in Objective-C source code, but it does so by
considering such files to be written in an additional language which you might be unaware you
are even using: Objective-C++. For most purposes the difference is transparent, but the Swift
compiler is not compatible with this superset of Objective-C and you will need to generate
header files for your API which do not include anything outside of the base Objective-C
specification.

Once you have access to C compatible header files for your API there are two main factors that
you will have to contend with to use them from Swift or to create an idiomatic Swift layer: type
compatibility and memory management.

www.accusoft.com

What You Get with PrizmDoc Viewer Docker

Integers are among the simplest types in any programming language, but there are a
dazzling array of integer types. Many of these types have different widths in different
platforms and contexts.

If you are using Swift 6 or later, you can utilize a set of C interoperability types which are
now included in the Swift standard library. Additional documentation can now be found
at that location on some of the other topics covered here. Swift’s Int and UInt types
will be the same widths as C’s long and unsigned long in most cases but you should
usually prefer to use the C interoperability types in Swift when available.

An even better option is to not use types whose widths are implementation defined.
Swift presents a set of integer types with exact lengths which are detailed below, along
with their counterparts from C’s stdint.h header.

Integral Types

Swift Type C / C++ Type (stdint.h)

Int8

Int16

Int32

Int64

UInt8

UInt16

UInt32

UInt64

Int8_t

Int16_t

Int32_t

Int64_t

UInt8_t

UInt16_t

UInt32_t

UInt64_t

https://developer.apple.com/documentation/swift/swift_standard_library/c_interoperability?changes=latest_minor

Enumerations are ever present in APIs for good reason. Swift code can make use of
C enumerations in included headers natively, but both C++ and Swift provide fuller
featured enumeration types. These types offer better safety guarantees and a wider
variety of backing types. Writing corresponding enum definitions in respective files is
relatively straight forward:

Enumerations

 enum class CppBarcodeType: uint64_t

 {

 case Barcode1D = 0

 case Barcode2D = 1

 case BarcodePostal = 2

 };

barcode-type.hpp

barcode-type.swift

 public enum SwiftBarcodeType: UInt64 {

 case Barcode1D = 0

 case Barcode2D = 1

 case BarcodePostal = 2

 }

You can then convert Swift enumeration values back and forth between UInt64’s like this:

And similarly in C++:

Enumerations (cont)

 CppBarcodeType getCppEnum (uint64_t val) {

 return CppBarcodeType{val};

 }

 uint64_t getRawValue(CppBarcodeType val){

 Return static_cast<uint64_t>(val);

 }

 public func getSwiftEnum(val: UInt64)->SwiftBarcodeType {

 return SwiftBarcodeType(rawValue: val)

 }

 public func getRawValue(val: SwiftBarcodeType)->UInt64 {

 return val.rawValue

 }

barcode-type.h

 typedef CBarcodeType uint64_t;

Basic structs defined in C header files will be usable as is and can be passed to and
from Swift code as values. If you need to pass pointers to and from C APIs, or if your
structs contain pointers, Swift will do its best to translate them into one of its equivalent
types, of which there are more than a few.

Pointers to types which are declared in your C headers but not defined will be translated
by Swift into its OpaquePointer class. Without the definitions present there is not much
you can do to them in Swift other than store them and pass them back to the API.

Structs and Pointers

Opaque Pointers

www.accusoft.com

What You Get with PrizmDoc Viewer Docker

Pointers to objects which Swift can represent (such as primitives or structs) will be
represented in Swift by a set of generics, UnsafePointer<> and UnsafeMutablePointer<>.
When pointing to C arrays of these objects, there are buffer versions of each of them:
UnsafeBufferPointer<> and UnsafeMutableBufferPointer<>. Finally, all four of these
types have an associated “raw” version which is not generic and is equivalent to C’s
void*s: UnsafeRawPointer, etc.

These types will allow you to work with memory allocated in C or C++ and passed to
Swift, but no automatic memory management or garbage collection will be performed
on the memory they point to. They are essential for passing data from native code to
Swift but you should be careful to make sure that any objects are deallocated after you
are done with them.

Unsafe Pointers

Swift Pointer Type Equivalent C Type

const MyType*

MyType*

const void*

void*

Swift provides several special cases for passing objects to C APIs that make some
common situations considerably easier:
●

• Swift strings are automatically converted when passed to functions declared as
 accepting char* arguments.
●

• Swift arrays can be passed to functions expecting pointer arguments of the
 equivalent type.

• Swift functions and closures can be passed to C API functions expecting function
 pointer arguments.

In the cases of arrays and functions you will of course have to ensure that their
component types are compatible with what the C function expects.

Special Cases

https://developer.apple.com/swift/blog/?id=6

As mentioned above, there are several ways to pass pointers to Swift objects to C, but
this is where some additional issues with memory management come into play.
When passing objects which are dynamically allocated, you run the very real risk of
passing data into your API which will no longer exist by the time it is used. Thankfully,
the Unmanaged class provides some tools for these situations.

Unmanaged provides two static functions for creating instances from Swift objects:
Unmanaged.passRetained() and Unmanaged.passUnretained(). The difference
between the two is how the memory manager deals with the object your are creating
the pointer from. Use passRetained if the C API will need to hold onto the reference
for later use, but be warned that you will eventually need to manually release the
object.

Once you have created an Unmanaged instance from either of these functions, you
can use its toOpaque() method to yield an UnsafeMutableRawPointer which can be
passed to a C function.

Passing Memory Managed
Objects to C

